Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The deposition of low temperature sputtered In2O3 films using pulsed d.c magnetron sputtering from a powder target

Identifieur interne : 000021 ( Main/Repository ); précédent : 000020; suivant : 000022

The deposition of low temperature sputtered In2O3 films using pulsed d.c magnetron sputtering from a powder target

Auteurs : RBID : Pascal:14-0084424

Descripteurs français

English descriptors

Abstract

Transparent conductive oxide layers are widely used in various applications such as solar cells, touch screen displays, heatable glasses, etc. This present work describes the deposition of transparent and conducting In2O3 films from In2O3 powdered targets using a pulsed d.c magnetron sputtering technique without additional substrate heating or substrate biasing. The films deposited at various oxygen concentrations were approximately 500 nm thick, were pin-hole free and well adhered to the glass substrates. The material characteristics of the films were analysed using X-ray diffraction, four point probe, hot probe, UV-vis spectroscopy, atomic force microscopy and profilometry. Structural and electrical analyses revealed that the films were crystalline and highly conductive when sputtered in the absence of oxygen but a dramatic change in resistivity was observed when oxygen was introduced during the deposition. Resistivity increased from 0.004 Ω cm (no oxygen) to 5 Ω cm with 10% oxygen.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0084424

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The deposition of low temperature sputtered In
<sub>2</sub>
O
<sub>3</sub>
films using pulsed d.c magnetron sputtering from a powder target</title>
<author>
<name sortKey="Karthikeyan, Sreejith" uniqKey="Karthikeyan S">Sreejith Karthikeyan</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Materials & Physics Research Centre, University of Salford, The Crescent</s1>
<s2>Salford, M5 4WT</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Salford, M5 4WT</wicri:noRegion>
<orgName type="university">Université de Salford</orgName>
<placeName>
<settlement type="city">Manchester</settlement>
<settlement type="town">Salford</settlement>
<region type="nation">Angleterre</region>
<region nuts="2" type="region">Grand Manchester</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electrical and Computer Engineering, University of Minnesota</s1>
<s2>Minneapolis, MN 55414</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Minneapolis, MN 55414</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hill, Arthur E" uniqKey="Hill A">Arthur E. Hill</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Materials & Physics Research Centre, University of Salford, The Crescent</s1>
<s2>Salford, M5 4WT</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Salford, M5 4WT</wicri:noRegion>
<orgName type="university">Université de Salford</orgName>
<placeName>
<settlement type="city">Manchester</settlement>
<settlement type="town">Salford</settlement>
<region type="nation">Angleterre</region>
<region nuts="2" type="region">Grand Manchester</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pilkington, Richard D" uniqKey="Pilkington R">Richard D. Pilkington</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Materials & Physics Research Centre, University of Salford, The Crescent</s1>
<s2>Salford, M5 4WT</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Salford, M5 4WT</wicri:noRegion>
<orgName type="university">Université de Salford</orgName>
<placeName>
<settlement type="city">Manchester</settlement>
<settlement type="town">Salford</settlement>
<region type="nation">Angleterre</region>
<region nuts="2" type="region">Grand Manchester</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0084424</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0084424 INIST</idno>
<idno type="RBID">Pascal:14-0084424</idno>
<idno type="wicri:Area/Main/Corpus">000089</idno>
<idno type="wicri:Area/Main/Repository">000021</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atomic force microscopy</term>
<term>Cathode sputtering</term>
<term>Electrical conductivity</term>
<term>Glass</term>
<term>Heat treatments</term>
<term>Indium oxide</term>
<term>Oxide layer</term>
<term>Physical vapor deposition</term>
<term>Profilometry</term>
<term>Solar cells</term>
<term>Sputter deposition</term>
<term>Sputtering</term>
<term>Structural analysis</term>
<term>Thin films</term>
<term>Ultraviolet visible spectrum</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dépôt pulvérisation</term>
<term>Couche mince</term>
<term>Dépôt physique phase vapeur</term>
<term>Pulvérisation cathodique</term>
<term>Couche oxyde</term>
<term>Cellule solaire</term>
<term>Verre</term>
<term>Traitement thermique</term>
<term>Diffraction RX</term>
<term>Spectre UV visible</term>
<term>Microscopie force atomique</term>
<term>Profilométrie</term>
<term>Analyse structurale</term>
<term>Conductivité électrique</term>
<term>Oxyde d'indium</term>
<term>Pulvérisation irradiation</term>
<term>In2O3</term>
<term>Substrat verre</term>
<term>8115C</term>
<term>8460J</term>
<term>6855J</term>
<term>7361</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Verre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Transparent conductive oxide layers are widely used in various applications such as solar cells, touch screen displays, heatable glasses, etc. This present work describes the deposition of transparent and conducting In
<sub>2</sub>
O
<sub>3</sub>
films from In
<sub>2</sub>
O
<sub>3</sub>
powdered targets using a pulsed d.c magnetron sputtering technique without additional substrate heating or substrate biasing. The films deposited at various oxygen concentrations were approximately 500 nm thick, were pin-hole free and well adhered to the glass substrates. The material characteristics of the films were analysed using X-ray diffraction, four point probe, hot probe, UV-vis spectroscopy, atomic force microscopy and profilometry. Structural and electrical analyses revealed that the films were crystalline and highly conductive when sputtered in the absence of oxygen but a dramatic change in resistivity was observed when oxygen was introduced during the deposition. Resistivity increased from 0.004 Ω cm (no oxygen) to 5 Ω cm with 10% oxygen.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>550</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>The deposition of low temperature sputtered In
<sub>2</sub>
O
<sub>3</sub>
films using pulsed d.c magnetron sputtering from a powder target</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KARTHIKEYAN (Sreejith)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HILL (Arthur E.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PILKINGTON (Richard D.)</s1>
</fA11>
<fA14 i1="01">
<s1>Materials & Physics Research Centre, University of Salford, The Crescent</s1>
<s2>Salford, M5 4WT</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Electrical and Computer Engineering, University of Minnesota</s1>
<s2>Minneapolis, MN 55414</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>140-144</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000505786170230</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>31 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0084424</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Transparent conductive oxide layers are widely used in various applications such as solar cells, touch screen displays, heatable glasses, etc. This present work describes the deposition of transparent and conducting In
<sub>2</sub>
O
<sub>3</sub>
films from In
<sub>2</sub>
O
<sub>3</sub>
powdered targets using a pulsed d.c magnetron sputtering technique without additional substrate heating or substrate biasing. The films deposited at various oxygen concentrations were approximately 500 nm thick, were pin-hole free and well adhered to the glass substrates. The material characteristics of the films were analysed using X-ray diffraction, four point probe, hot probe, UV-vis spectroscopy, atomic force microscopy and profilometry. Structural and electrical analyses revealed that the films were crystalline and highly conductive when sputtered in the absence of oxygen but a dramatic change in resistivity was observed when oxygen was introduced during the deposition. Resistivity increased from 0.004 Ω cm (no oxygen) to 5 Ω cm with 10% oxygen.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15C</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70C61</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Dépôt pulvérisation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Sputter deposition</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Dépôt physique phase vapeur</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Physical vapor deposition</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Pulvérisation cathodique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Cathode sputtering</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Couche oxyde</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Oxide layer</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Capa óxido</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Cellule solaire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Solar cells</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Verre</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Glass</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Traitement thermique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Heat treatments</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>XRD</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Spectre UV visible</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Ultraviolet visible spectrum</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Espectro UV visible</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Profilométrie</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Profilometry</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Perfilometría</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Analyse structurale</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Structural analysis</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Análisis estructural</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Pulvérisation irradiation</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Sputtering</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>In2O3</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Substrat verre</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>8115C</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>6855J</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>7361</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>118</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000021 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000021 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0084424
   |texte=   The deposition of low temperature sputtered In2O3 films using pulsed d.c magnetron sputtering from a powder target
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024